
Technical Report on the Data Reference Model v3.6 of the
AIStudyBuddy

Sven Judel, Tobias Johnen
Learning Technologies Research Group, RWTH Aachen University

{judel,johnen}@cs.rwth-aachen.de

1 Introduction

The AIStudyBuddy project implements modern AI technologies to support students in their individual
study planning and reflection, as well as monitoring cohorts and making data-supported decisions about
study plan designs. To achieve these aims, various data on study program models and study life cycle
data needed to be collected and processed. As these data are managed by different systems in different
formats by the project’s partner universities, a data reference model was created.

This report presents this model and reasons its structure. It is aimed at supporting employees of uni-
versities who need to transform their local data into this model and analysts by describing each attribute’s
purpose and content. Additionally, techinical specifications and enums for selected attributes, are given
in an Open Science Framework project at [7].

2 Contributors

Within the joint project, different people contributed to the data reference model. Their names are given
below, ordered by their last name:

Katharina Batz Karin Brieger Joel Emanuel Fuchs
Ruhr University Bochum University of Wuppertal University of Wuppertal

Hayyan Helal Tobias Johnen Sven Judel
RWTH Aachen University RWTH Aachen University RWTH Aachen University

Christian Metzger Dorian Naujokat Peter Pultke
Ruhr University Bochum University of Wuppertal University of Wuppertal

Christian Rennert Sonja Sokolovic Miriam Wagner
RWTH Aachen University University of Wuppertal RWTH Aachen University

Jürgen Wittsiepe
Ruhr University Bochum

3 Purpose of the Data Reference Model

The three universities, joining in to the AIStudyBuddy project, use different systems to manage their
students’ data. These systems use different models to store data, such that a direct exchange of data
dumps from the different systems was not suitable nor a merge for joint analyses possible. Instead, a
common model was created in which each partner should transform their local data into, to exchange
them, and later store them together in a data warehouse. To serve the needs of curriculum analytics and

1



enable rule-based AI to check study plans and make recommendations to students, the models consist of
study life cycle data as well as models of the universities’ study programs.

4 Model Description

The data reference model (DRM) was created in an iterative way. At the beginning of the project,
modeling study programs and study life cycle data (LCD) was split up between working groups to work
in parallel and get first results earlier.

Different intermediate models were created and used by other working groups within the project,
while a dedicated working group targeted a final alignment and merge of the two models. In the follow-
ing, the model in its final version 3.6.0 is presented. It allows modeling of all focused study programs
from each university as well as the LCD that occur in them. The DRM is modeled in an object-centric
approach to be stored within a MongoDB. However, due to the fact that all source systems for LCD were
relational, this part of the model, containing the Personal Data, Enrollment Data and Achievement Data
(Figure 1 bottom), is kept relational, although it is still stored in a MongoDB.

Figure 1: The complete data reference model in version 3.6

4.1 Preliminary Remarks

Some decisions about the model’s design impact different aspects of it and cannot be introduced in a
section dedicated to only one part or entity of the model. Therefore, these decisions are given here:

• The model was created within a research project, collecting a broad range of analysis interests and
needs for insights. In this context, data protection requirements for the use of the data to operate

2



the application are met. If necessary, participating universities must create the legal requirements
within their own legislative competencies.

• Although all partner universities structure their study year in semesters, the model uses term as a
general notion to enable the usage of semesters, trimesters, quarters and other structures, if given.

• For each entity, a 4-letter abbreviation is set and used as the prefix for each of its attributes. This
ensures uniqueness of each attribute and eases communication in contrast to having an id at-
tribute for each entity. The abbreviations are also used within foreign key attributes. E.g., the
stud univ id attribute is part of the entity student and references the univ id of the entity
university.

• All dates are formatted either as YYYY-MM-DD or just YYYY-MM as it was sufficient for the
project’s scope and concrete datetimes were sometimes not retrievable from the source systems.

• For some attributes, possible values are defined within an enum (see [7]). As this model was
developed within the context of German universities, these values are given in German only.

4.2 Data Sources

LCD can be extracted from the campus management systems, examination management systems and
student information systems of the universities. The structures that define the legal framework for the
implementation of a study program are usually only available within the business logic of the respective
system. This makes automatic extraction difficult or impossible. Therefore, examination regulations and
module handbooks, which are often written in natural language, must be transformed manually. To do
so, a special editor for the study program data was created.

In the following, each semantic group and its entities, as well as the separated university are described
in detail.

4.3 University

The university is the only entity which data is not derived from the universities’ systems or the study
program editor. Instead, its content must be entered by an administrator of the data warehouse. This
consists of the university’s name, an abbreviation and an fso key, referencing the university’s Hochschul-
nummern, used by the Federal Statistical Office (FSO), see [3]. It is possible to use the fso key as the
ID of the university. However, there are cases in which the fso key can change (e.g., split of Universität
Koblenz - Landau [2]). To ease or overcome migrations, such semantic connections of IDs and entity
attributes should be avoided. Internally, the univ id is also used for configurations of other software
components and, e.g., linked to authentication tokens.

4.4 Study Program Modeling

The entities of the study program modeling serve as the foundation for the project. It represents the study
programs that can be planned in the StudyBuddy application and the basic rules for the rule based AI.
Further, the study life cycle data, that is analyzed and which results are displayed in BuddyAnalytics, has
references to the entities that are presented below.

4.4.1 Study Program

A study program is the root for the complete model and consists of an identifier (stpr id) and a
reference to the university it is offered at (stpr univ id). Although study programs like computer
science are offered at various universities, they differ in multiple ways, including regulations and offered
modules, such that each study program for each university has to be modeled separately. However, the fso
key (stpr fso key) is given to detect similar study programs. In Germany, these keys are defined for

3



different levels (universities, states, country). To unify these definitions and overcome having different
study programs assigned the same key, an own list of allowed keys was created by the working group,
which is given in [7]. The name of a study program (stpr name) is given as a LocalizedName (see
Section 4.6) to have the localized names for each supported language, currently English and German.
The stpr is partial attribute states if a study program is part of a bigger study program, e.g.,
combinatorial study programs at BUW1 or the Teacher Education Programs at RWTH2. Some study
programs might have an addendum to their degree or name, e.g., Teacher Education Programs (Lehramt
fuer Gymnasium/Gesamtschule) that can be stated in the stpr addendum. The earned degree when
completing the study program is given in the stpr degree and a list of possible values stated in [7].

4.4.2 Regulations

Examination regulations are modeled in a separate entity, as for each study program, multiple regula-
tions can apply at the same time. Further, historic versions would be lost if regulations would just be
an attribute of the study program entity. Therefore, a regulation consists of an identifier (regu id)
and a reference on the study program it applies for (regu stpr id). As version identifiers might
overlap between study programs at the same university, it is not used as the identifier of an entity ob-
ject but set in the attribute regu version. The number of credit points students need to earn is
set in the regu credit points. To represent the validity, the attributes regu valid from and
regu valid until are provided. A study program references a root area (regu area id) that con-
tains all it’s subareas and modules. This entity is described in detail in the next subsubsection. To model
different default study plans, the regu start plans holds a StartPlanMapping (see Section 4.6)
which plan modules are presented in Section 4.4.5. Finally, the regu is published states if a regu-
lation model is finished. This attribute is purely for internal management to not show regulations via any
client but the study program editor, that are still edited and, i.e., miss modules or other configurations.

4.4.3 Areas

Areas provide structure within a study program regulation by grouping modules and other areas. This
structure can be found in different study programs and might also be used in rules (e.g., in RWTH’s Mas-
ter programme in Computer Science, students have to achieve at least 12 ECTS within the area of theo-
retical computer science). Each area has an identifier (area id) and a localized name (area name).
Utilizing the advantages of a document-oriented database, child areas are set within the single attribute
area child area ids as a list of IDs. The lists of child areas of two different areas do not have to
be disjoint, one area can be the child of multiple others. If an area does not hold any mandatory modules,
that students have to take, it can be flagged as selectable (area selectable). Linked to selectable
modules is the number of allowed switches (area max switches) between the selected and dese-
lected state of an area. Finally, potential requirements, linked to an area, can be set as the respective
complex data type (see Section 4.6) in the area requirements.

4.4.4 Modules

Modules also consist of an identifier (modu id), a localized name (modu name) and a validity time
span (modu valid from and modu valid until). In contrast to areas, having their child areas as
their own attribute, modules reference their parent areas (modu area ids). This slightly inconsistent
modeling is due to already established models within different work packages that contributed to the
data reference model. Changing these models would have resulted in extensive reworks, while the func-
tionality of the DRM is not harmed by keeping it. Therefore, this inconsistency was kept. Additionally,

1https://www.uni-wuppertal.de/de/studium/studiengaenge/detail/ma-kombinatorische
r-studiengang-kombi/, last access: 21.03.2025

2https://www.lbz.rwth-aachen.de/cms/LBZ/Studium/˜qqwo/Rund-ums-Lehramtsstudium/?li
dx=1, last access: 15.04.2025

4

https://www.uni-wuppertal.de/de/studium/studiengaenge/detail/ma-kombinatorischer-studiengang-kombi/
https://www.uni-wuppertal.de/de/studium/studiengaenge/detail/ma-kombinatorischer-studiengang-kombi/
https://www.lbz.rwth-aachen.de/cms/LBZ/Studium/~qqwo/Rund-ums-Lehramtsstudium/?lidx=1
https://www.lbz.rwth-aachen.de/cms/LBZ/Studium/~qqwo/Rund-ums-Lehramtsstudium/?lidx=1


the list of regulations, the module is part of, is given in the module itself (modu regu ids). These
IDs could be computed by going up the nested areas, but this operation can become extensive such that
these values are set explicitly. For which area and regulation a student took a module will be stated in
the unit entity, described in Section 4.5.5. Further, the number of terms a module endures is set in the
modu term length and the maximum number of failed exam attempts in modu max failures.
If there is no limitation on the number of failures, the attribute should be set to 999. This value is con-
sidered big enough to cover a reasonable number of failed attempts during the time a module is valid.
The number of credit points students earn when passing the module is set in modu credit points.
The related weekly working hours (this name is used to overcome term related notions like Semester-
wochenstunden) are set in the modu wwh and the workload in hours in the modu total workload.
Tags and Requirements (see Section 4.6) can be set in modu tags and modu requirements. Fi-
nally, four textual elements from the module handbook can be set, all as LocalizedStrings: The module
description (modu description), the assessment mode (modu assessment mode), the learning
targets (modu learning targets) and the teaching methods (modu teaching methods). Al-
though not utilized within the project’s duration, text mining can be applied on these attributes to further
investigate a module’s content or potential links of students’ course preferences or grades and, e.g., as-
sessment modes. Keeping this information up to date creates additional effort, universities must manage.
As this is not required by the end of the project, these attributes are optional and therefore nullable.

4.4.5 Plan Modules

While the module entity represents concrete modules and the areas and regulations in which they can be
taken by students, the placements of some of these modules in the default study plan of a regulation (if
given) is set by a plan module. This entity maps a module, module component or placeholder to a specific
term. It consists of an ID plmo id and a reference to the specific area in the attribute plmo area id.
There should either be a reference to a specific module through plmo modu id or to a placeholder
plmo plac id. This mutual exclusion requires one of these attributes to be null. In case a specific
component is placed differently than the moco relative term suggests, the plmo comp id ref-
erence can be set. Component references also always require plmo modu id to be set. Besides the
references, the plan module saves the term in which the module or component is planned in the attribute
plmo term. It is stored as an integer, which represents the offset from starting the plan to taking the
corresponding plan module item.

4.4.6 Placeholder Modules

In cases where the study program allows for a choice between modules or has a set amount of credits in a
specific area with variable amounts of modules, placeholder modules are required to display default study
programs with the correct amount of credits and workload, as well as giving students a better overview
over the number of modules in a term. The placeholder module entity consists of an id plac id and a
required reference plac area id to the area entity. The other attributes are a name plac name, the
amount of credits plac credits and the duration plac duration.

4.4.7 Module Description Data

Every module consists of different components. For example, the module ”Programming” in a computer
science study program might have the components ”Exam”, ”Lecture” and ”Exercises”. If the module
should be reused in different study programs (with different instances in the module entity), some way of
checking if the components are the same is required. This can be used, e.g., to compare grades achieved
in the same module between different study programs and the modules that were taken before. To account
for that, two entities for components exist. The component entity is used to have the same components
for every single regulation. It consists of an ID (comp id), a name (comp name) and the time range
(comp valid from and comp valid until), in which the component is valid.

5



To connect modules to components, the entity module component is implemented. Multiple mod-
ule component instances can be connected to the same component. The main purpose is to store the spe-
cific rules a component has for a module in a regulation. This allows the rules for components to differ,
depending on which exact module the student takes. As every module component is connected to exactly
one component and exactly one module, its primary key is composed of the references moco modu id
and moco comp id. In case of exams, moco free trials store the maximum number of trials
for the component. moco relative term stores the offset from start of the module to start of the
component, which is relevant for modules that span over multiple terms. moco credit points are
the credit points the specific component contributes to the module. moco wwh are the weekly working
hours required for the component and moco is compulsory flags a component as required or not re-
quired for passing the related module. moco requirements store all other rules about the component
(see Section 4.6).

4.5 Students’ Life Cycle Data

Life cycle data (LCD) represents the data students create while studying. This includes their term-wise
enrollments for study programs and single modules, exam registrations and received grades.

4.5.1 Students’ Personal Data

Students’ personal data is stored in two entities: student and student address. A student consists of
an identifier (stud id), a reference to the university he or she is enrolled in (stud univ id), a
key for the gender (stud gender, e.g. f for female), the year of birth (stud birth year) and
a nationality key (stud nationality key). Regarding the student’s university entry qualification
(ueq) a key for the form (stud ueq form key, e.g., Gymnasium or Berufsoberschule), the grade
(stud ueq grade) and a key for the country it was received in (stud ueq country key) have to
be provided. The country key is an integer from 1 to 3, mapping a student’s nationality on either Ger-
many (1), EU and UK (2) or Other (3) [7], creating a compromise of the target users’ desire for insights
and data protection.

Theoretically, students can be enrolled at multiple universities at once or do a consecutive master
at another university. In practice, detecting multiple enrollments or changing the university cannot be
done automatically and would require a student to confirm his or her identity in the received data dumps
of each university. Further, these cases are considered to occur so rarely that an analysis of such cases
does not create meaningful results that can not be used to provide feedback to students. Therefore, a
separate entity to model students’ enrollments was omitted. If intended for future extensions of the
model’s scope, such an entity could be reintroduced. In this case, all references on the stud id in the
entities enrollment term and degree program have to be adjusted to the enrollment ID.

While the attribute values within the student entity documents are expected to stay put, a student’s ad-
dress might change during the time of study. Therefore, the addresses are modeled in the separate entity
student address. It consists of an identifier (stad id) and a reference to the student (stad stud id)
whose address is modeled. Two address strings, consisting of the country key and the first three digits
of the postal code, for the term and home address can be set as well as two dates, stating the time period
that an address is valid in. This data is included as the question arose whether the distance of a student to
a non-distance university has an impact on study progress. For some universities, students can state two
addresses to refer to the addresses on which they stay during a term and outside of it. Therefore, the two
different address attributes are included. Finally, both attributes, to mark the valid time span of an ad-
dress, have to have values. The currently valid time span can be identified by the stad valid until
attribute being set to the default value 9999-12.

6



4.5.2 Enrollments

The state of a student’s enrollment is modeled term-based within the enrollment term entity. This allows
tracking terms with a regular enrollment, sabbaticals and terms without an enrollment. The primary
key consists of the combination of the student ID, the enrollment is tracked for (enrt stud id) and
the encoding of the term (enrt term). Besides sabbaticals, there might be multiple other states of
non-regular enrollments, e.g., terms abroad, but due to data protection, all these states are mapped on
sabbatical and represented in the boolean attribute enrt is sabbatical. Besides that, an enroll-
ment has a status of predefined values, e.g., Haupthörer*in or Zweithörer*in, represented by defined
keys (see [7]). If desired, a comment on this status can be set in enrt status comment. Finally, the
total amount of terms a student was enrolled at a university, including the one the entry is referencing
(meaning the value can not be 0 or lower), is given as enrt term total. This is done as the local
management systems of all partners were able to provide this value, enabling to use it as a potential value
to check for missing data.

4.5.3 Degree Program

The enrollment for a study program is modeled via the degree program and subject component entities
and their related term-wise ones. A degree is linked to a student (depr stud id) and stores the current
total grade (depr grade total) and credit points (depr credit points total). These two
values are given, similar to the enrt term total, because of their availability in the source systems
and their potential complex calculation.

The type of degree is also tracked term-wise in the degree program term entity. For these types,
stored in the dept type key, a key list is given in [7]. It consists of the regular Erststudium and Zweit-
studium (see [1, 4, 5, 6]) as well as more specific ones (Konsekutives Masterstudium, Aufbaustudium,
Promotionsstudium). Depending on a university’s internal model, some of the specific values might not
be given explicitly but grouped in another one. This needs to be considered when interpreting analysis
results later in time. Similar to the enrollment term, the ID of the degree program (dept depr id) and
the term representation (dept term) are used as the primary key.

4.5.4 Subject Component

Linking an enrollment and the study program is managed by the subject component entity. While
the enrollment and related data is managed term-wise in the subject component term entity, the sub-
ject component serves purely as a link between the term-wise data, the degree program and the related
units from the achievement data (see Section 4.5.5). Therefore, it only consists of its own ID (suco id)
and the reference of the related degree program (suco depr id). This link is especially necessary
when more than one subject is related to a degree program, e.g., for combinatorical study programs that
consist of two or more partial study programs (see Section 4.4.1). While each partial program is modeled
at its own element in the study program entity, the combined study of them is represented by having a
subject component for each and linking them to the same degree program.

Following that, the subject component term provides the details on the study program enrollment.
Instead of referencing an ID of the study program, the suct regu id references a regulation, as this
might change during the study. An inspection of the partners’ management systems shows that if students
change the regulation, data related to the achievements is reassigned to the new regulation. This means
that historical data is hard to detect (e.g., by using exam dates and a lot of study program specific context
knowledge) or completely lost. Transforming local data into this data reference model and keeping the
latest version locally for comparison enables the detection of such changes and also keeping the his-
toric data, which also benefits some intended analysis within the project. Next, the suct term total
stores the number of terms enrolled for the related (partial) study program, including the modeled term.
The suct status key tracks the detailed enrollment state, including values for various exmatricu-
lation reasons or completing a study program [7]. If desired, a comment on the state can be set in the

7



suct status comment. Finally, if a student is assigned an individual period, deviating from the
official standard period for a study program, it can be set in the suct individual period.

4.5.5 Achievement Data

Achievement data, referring to achieved grades and credits, are split up into two entities, unit and
unit event. A unit represents an achievement on the level of a module. Therefore, every unit has a refer-
ence to the module entity with the foreign key unit modu id. Besides its own primary key unit id,
it also references the subject component to which the achievement belongs (unit suco id). The ref-
erence to the regulation (unit regu id) is needed, as modules can be part of multiple regulations,
but it is also required to know the exact regulation. It is not possible to use the subject component term
reference to the regulation, as modules can have a duration spanning over multiple terms, making it hard
and sometimes impossible to find out the exact term to use when a student changed the regulation during
the duration of the module. It also includes an optional reference to the area entity (unit area id),
as modules sometimes are part of multiple areas in a regulation. The reference is optional, because some
universities do not have the information until it is calculated for the graduation of a student. The grade
for the module is stored in unit grade and the awarded credit points in unit credit points.
The later attribute is necessary, as the credit points awarded might differ from the general credit points,
stored in the module entity, e.g., because of overshooting the credit point boundaries of the regulation.

A unit event represents a single event that occurs in the context of a single unit, but on the level
of components or offerings, e.g., registering for or passing an exam. It consists of an ID unev id
and foreign keys to its unit as well as the possible term offering data (see Section 4.5.6) it is linked to.
The foreign keys unev cour id, unev exam id and unev asse id are all optional, but usually,
exactly one of them should be set. If none of them is set, no connection to the upper part is possible, and
probably the unit’s unit modu id will also be null. The date on which the event occurred is stored
in unev date. The kind of event is stored in unev status. This attribute can hold arbitrary values
but to ease the creation of analyses, some values, e.g. “Bestanden” for passing an exam, are predefined
(see [7]). The unev status comment attribute can be used to add more context to the event. The
grade is stored in the attribute unev grade. Finally, the attribute unev is active is set to true
if the given unit event and its grade is the currently active one for a unit. This can change, e.g., after an
exam review and a regrading. Such events do not override a unit event but only outdate them by setting
their is active attribute to false and creating a new one which becomes the active one. However,
the unit grade within the related unit event is overridden. This differentiates the unit events from
classical event logs which single entries do not change over time. The concept in the DRM arose from
the way the investigated universities’ management systems represent changing grades internally.

4.5.6 Term Offering Data

Term offering data refers to entities, where new data is required for every term. For example, exams and
courses have new dates every term and therefore, need to be modeled in a way where the core module
and component data does not need to be updated. As courses and exams are held for specific components
and not the module in its entirety, all offerings are connected to components (see Section 4.4.7). There
are four different entities to differentiate the kind of offering. The exam offering entity consists of an
ID (exam id) and the foreign key to the component table (exam comp id). The name of the exam is
stored in exam name, the term in which the exam is hold in exam term and the exact start and end
times in exam start date and exam end date as datetimes.

The assessment offering entity is used to model assignments that can also lead to credits
being awarded, but are worked on by students at home and not on a fixed date. Therefore, the entity also
consists of an ID asse id, a reference to a component asse comp id, a name asse name and the
corresponding term asse term.

Course data is modeled by the entities course offering and group offering. Two entities are needed,
as, e.g. universities use course data to group seminars on different topics together. For example, the

8



module ”Seminar Computer Science” can have different, topic-related offerings (e.g. ”Advanced Topics
in Cryptography” or ”Selected Topics in Technology Enhanced Learning”). The representation will
consist of a single course offering, for the module, and multiple group offerings, one for each topic.
For modules with just a single course, there will be exactly one group offering. The course offering
entity consists of an ID cour id, a reference to a component cour comp id as well as a list of
references to group offering instances (cour grpo ids). It also consists of a name cour name, the
term cour term, the type of the course (cour type, e.g. lecture or exercise) and a list of rooms
cour rooms. The group offering includes an ID grpo id, a name grpo name, a list of (general, not
event related) instructors grpo instructors and a list of events (see Section 4.6) occurring for the
offering (grpo events).

4.6 Complex Data Types

While most attributes are basic data types (integer, float, string and boolean), some require matching
patterns (e.g., dates as strings in the format of YYYY-MM or YYYY-MM-DD), others even require data
structures. These structures are provided by the complex data types that are described in this subsection.
Each data type is a document-like structure itself with keys and values of different basic or other complex
data types.

4.6.1 LocalizedString

A LocalizedString represents the translation of a field’s content into different languages. The current
version requests a German and English translation, represented by the fields de and en.

{
"de": "(string) German translation",
"en": "(string) English translation"

}

Example: The translation of the name of the study program Computer Science Bachelor would look
like this:

{
"de": "Informatik Bachelor",
"en": "Computer Science Bachelor"

}

4.6.2 LocalizedName

The LocalizedName provides a name translation not only in different languages (using LocalizedStrings)
but also enables the provision of an optional short name, e.g. if a module name has an established or
official abbreviation.

{
"complete_name": "(LocalizedString) The complete name in English

and German",
"short_name": "(LocalizedString) The optional short name in English

and German"
}

Example: The translation of the name of the study program Computer Science Bachelor would look
like this:

9



{
"complete_name": {
"de": "Informatik Bachelor",
"en": "Computer Science Bachelor"

},
"short_name": {
"de": "Info B.Sc.",
"en": "CS B. Sc."

}
}

4.6.3 Event

The Event type represents events that can happen within the academic context. Its only required field is
the date, containing the datetime of the event. All other fields, listed below, are optional.

{
"date": "(datetime) The datetime of the Event",
"duration": "(int) Optional: The duration of the Event in minutes",
"room": "(string) Optional: The room the Event took place in",
"instructor": "(string) Optional: The name of the instructor of the

Event",
"hybrid": "(bool) Optional: States if an Event took place both in

person and online",
"compulsory": "(bool) Optional: States if the Event was mandatory

for students to attend",
"recording": "(bool) Optional: States if the Event was recorded"

}

Example: The first event of a typical lecture in the winter semester 2024 would look something like
this:

{
"date": "2024-10-14 12:00",
"duration": "120",
"room": "FL.00.01",
"instructor": "Univ.-Prof. Dr.-Ing. Tobias Meisen",
"hybrid": "false",
"compulsory": "false",
"recording": "true"

}

4.6.4 Requirements

Requirements refer to a module, a module component, or an area and contain the various constraints
to respect to start and finish it. Further, it lists various flags, like a study goal it is related to, can be
given and a natural language description of constraints that cannot be modeled by the used constraint
representation. E.g., a literature research course, required for a seminar, done by the university’s library
that hands out printed documents to certify successful participation.

10



{
"start": "(string) The constraint to respect before being allowed

to start with a module, a module component, or an area",
"finish": "(string) The constraint to respect to complete a module,

a module component, or an area successfully",
"flags": "(list[string]) List of flags related to the requirement",
"other": "(string) A natural language description of special

requirements"
}

Example:

{
"start": "{’Mathe’} & {$[CS]>=120}",
"finish": "",
"flags": ["allow_auto_completion", "area_by_student"],
"other": "Theoretical knowledge is required"

}

This example states that before starting with the module that has these requirements, the module Mathe
should have been done and at least 120 credit points in the area CS should have been collected. Fur-
ther, the example assumes that the Campus Management System cannot provide success results of this
module; therefore, students are allowed to mark modules as completed by themselves, such that further
planning takes it into consideration. Another relevant flag is area by student, where the student must
choose the area of modules with multiple areas. If this flag is not used, the area will be chosen by the
solver. Finally, the other field allows for adding requirements in natural language, if it does not fit in
the model. These won’t be taken into consideration by the solver, but allow students to be at least aware
of them.

4.6.5 Tags

The Tags data type represents a list of tags, categorized by types, languages and other. They
enable referencing a group of modules. types tags refer to the type of a module (course, seminar, . . . )
and the languages tags to the languages a module is offered in. other tags can be used for additional
tags, e.g., math-related.

{
"types": "(list[string]) Tags defining the types of a module",
"languages": "(list[string]) Tags listing the languages a module is

offered in",
"other": "(list[string]) Further tags not related to a module’s

type or language"
}

Example: The module of a seminar within the area of theoretical computer science, held in English,
can have the following tags:

{
"types": ["Seminar"],
"languages": ["English"],
"other": ["Theoretical"]

}

11



4.6.6 StartPlan

While all previously presented data types provide a fixed set of fields, the StartPlan can have arbitrary
keys.

A StartPlan object represents one or multiple possible study plans, representing a certain study aim
(as the key) with a tuple of a translation as a LocalizedString and the associated plan modules (see
Section 4.4.5) as the value.

{
"(string) Key for the study aim": [
"(LocalizedString) German and English representation of the study

aim",
"(list[string]) List of associated plan module IDs"

]
}

Example: The definition of a full-time study program plan, next to one for part-time, can be repre-
sented by:

{
"fulltime": [
{"de": "Vollzeit", "en": "Full-time"},
[/* List of associated plan_module IDs */]

],
"parttime": [... ]

}

4.6.7 StartPlanMapping

The StartPlanMapping defines a mapping of term part keys on StartPlans. Term part keys refer to the
instances a term can have. E.g., summer and winter for semesters and autumn, winter and spring for
trimester.

{
"(string) Term part key": "(StartPlan) The related start plan"

}

Example: The definition of different start plans for winter and summer semester as well as full-time
and part-time students can look like this:

{
"summer": {
"fulltime": [
{"de": "Vollzeit", "en": "Full-time"},
[/* List of associated plan_module IDs */]

],
"parttime": [
{"de": "Teilzeit", "en": "Part-time"},
[/* List of associated plan_module IDs */]

]
},
"winter": {... }

}

12



References

[1] SGV § 4 Vergabe von Studienplätzen für ein Zweitstudium — RECHT.NRW.DE, 2019. https:
//recht.nrw.de/lmi/owa/br_bes_detail?sg=0&menu=0&bes_id=41405&anw_
nr=2&aufgehoben=N&det_id=529402, Last access: 01.04.2025.

[2] Stellungnahme zur Entscheidung des Ministerrats zur zukünftigen Struktur der Universität Koblenz-
Landau, 2019. https://www.uni-koblenz-landau.de/de/aktuell/archiv-2
019/stellungnahme-zur-entscheidung-des-ministerrats-zur-zukuenfti
gen-struktur-der-universitaet-koblenz-landau/index.html, Last access:
06.02.2025.

[3] Schlüsselverzeichnisse für die Studenten- und Prüfungsstatistik, Promovierendenstatistik und
Gasthörerstatistik WS 2023/2024 und SS 2024, 2023. https://www.it.nrw/system/
files/media/document/file/nrw_schlusselverzeichnis_definitionenkat
alog_studierende.xlsx, Last access: 06.02.2025.

[4] Second Degree Applicants, 2025. https://studium.ruhr-uni-bochum.de/en/seco
nd-degree-applicants, Last access: 01.04.2025.

[5] Special Admission Process - RWTH AACHEN UNIVERSITY - English, 2025. https://www.
rwth-aachen.de/cms/root/studium/vor-dem-studium/bewerbung-um-einen
-studienplatz/˜djkz/sonderantraege/?lidx=1, Last access: 01.04.2025.

[6] Zweitstudium, 2025. https://www.studierendensekretariat.uni-wuppertal.d
e/de/bewerbung-und-einschreibung/bewerbung/zweitstudium/, Last access:
01.04.2025.

[7] AIStudyBuddy Data Model Working Group. AIStudyBuddy Data Reference Model v3.6, 2025.
https://doi.org/10.17605/OSF.IO/YVN8C, Last access: 17.04.2025.

13

https://recht.nrw.de/lmi/owa/br_bes_detail?sg=0&menu=0&bes_id=41405&anw_nr=2&aufgehoben=N&det_id=529402
https://recht.nrw.de/lmi/owa/br_bes_detail?sg=0&menu=0&bes_id=41405&anw_nr=2&aufgehoben=N&det_id=529402
https://recht.nrw.de/lmi/owa/br_bes_detail?sg=0&menu=0&bes_id=41405&anw_nr=2&aufgehoben=N&det_id=529402
https://www.uni-koblenz-landau.de/de/aktuell/archiv-2019/stellungnahme-zur-entscheidung-des-ministerrats-zur-zukuenftigen-struktur-der-universitaet-koblenz-landau/index.html
https://www.uni-koblenz-landau.de/de/aktuell/archiv-2019/stellungnahme-zur-entscheidung-des-ministerrats-zur-zukuenftigen-struktur-der-universitaet-koblenz-landau/index.html
https://www.uni-koblenz-landau.de/de/aktuell/archiv-2019/stellungnahme-zur-entscheidung-des-ministerrats-zur-zukuenftigen-struktur-der-universitaet-koblenz-landau/index.html
https://www.it.nrw/system/files/media/document/file/nrw_schlusselverzeichnis_definitionenkatalog_studierende.xlsx
https://www.it.nrw/system/files/media/document/file/nrw_schlusselverzeichnis_definitionenkatalog_studierende.xlsx
https://www.it.nrw/system/files/media/document/file/nrw_schlusselverzeichnis_definitionenkatalog_studierende.xlsx
https://studium.ruhr-uni-bochum.de/en/second-degree-applicants
https://studium.ruhr-uni-bochum.de/en/second-degree-applicants
https://www.rwth-aachen.de/cms/root/studium/vor-dem-studium/bewerbung-um-einen-studienplatz/~djkz/sonderantraege/?lidx=1
https://www.rwth-aachen.de/cms/root/studium/vor-dem-studium/bewerbung-um-einen-studienplatz/~djkz/sonderantraege/?lidx=1
https://www.rwth-aachen.de/cms/root/studium/vor-dem-studium/bewerbung-um-einen-studienplatz/~djkz/sonderantraege/?lidx=1
https://www.studierendensekretariat.uni-wuppertal.de/de/bewerbung-und-einschreibung/bewerbung/zweitstudium/
https://www.studierendensekretariat.uni-wuppertal.de/de/bewerbung-und-einschreibung/bewerbung/zweitstudium/
https://doi.org/10.17605/OSF.IO/YVN8C

	Introduction
	Contributors
	Purpose of the Data Reference Model
	Model Description
	Preliminary Remarks
	Data Sources
	University
	Study Program Modeling
	Students' Life Cycle Data
	Complex Data Types


